Substitution Effect of a Single Nitrogen Atom on Linear Polycyclic Aromatic Hydrocarbons (PAHs) and Integrated Multiple π-Electron Conjugation

Sung Cho

Chonnam National University

We investigated the substitution effect of a single nitrogen atom on the molecular structure and π electron delocalization in linear nitrogen-substituted polycyclic aromatic hydrocarbons ($\mathrm{N}-\mathrm{PAHs}$). Out study identified three types of substituted N atoms, distinguished by the shape of polygons and the number of covalent bonds at N atoms; pyridic, pyrrolic, and graphitic N atoms. On the basis of the optimized molecular structures and magnetic-field induced properties of linear N-PAHs, we discovered that the local π-electron delocalization of sub-polycycles (e.g., mono- and bi-cyclic constituent moieties) in linear N-PAHs is preserved, despite deviation from ideal structures of parent monocycles and resulting in less effective π-electron delocalization at sub-polycycles. Notely, the introduction of a fused five-membered ring with a N atom ($\mathrm{N}-5 \mathrm{MR}$) in linear N -PAHs significantly perturbs the π-electronic condition of the neighboring fused six-membered ring (6MR). The monocyclic pyrrole, which represents the most optimized structure of $N-5 M R$ with six π-electrons, exhibits substantial bond length alternations, thereby strongly influencing the π-electron conditions of both the fused $\mathrm{N}-5 \mathrm{MR}$ and 6 MR , depending on the location of shared covalent bond. Additionally, the $\mathrm{N}-6 \mathrm{MR}$ with a graphitic N atom cannot generate monocyclic π-electron delocalization, but instead contributes the formation of polycyclic π-electron delocalization, as evidenced by bifurcated diatropic ring currents induced by a magnetic field orthogonal to the molecular plane. In conclusion, we propose that the satisfaction of Hückel $4 n+2$ rule for both sub- and macro-polycycles is curial for comprehending the overall π-electron delocalization, as well as the energetic benefit and spatial distribution of π-electrons in linear N-PAHs.

